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A vector nonlinear Schrodinger equation and corresponding laws of conservation are derived for
both a bulk medium and a nonlinear planar waveguide. After physical interpretation of these laws
of conservation the solutions of scalar nonlinear Schrédinger equation are found using a condition

for diffraction-free fields.
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I. INTRODUCTION

In recent years, much work has appeared in the area of
diffraction-free propagation of light. The effect of diffrac-
tion is usually involved with the transverse spreading of a
spatially limited beam. With respect to our knowledge,
the generally valid quantitative definition of diffraction
is not known. Nevertheless, several methods of how to
suppress the effect of diffraction are known, although the
cause of diffraction is not known.

In vacuum or in a homogeneous isotropic material the
diffraction does not exist only for the particular space
distribution fields [1-19]. Another possible way to sup-
press the diffraction is to use a material with an inho-
mogeneously distributed index of refraction, i.e., linear
waveguide [20,21] (guided fields do not diffract).

The diffraction can also be compensated by a nonlin-
ear interaction. A typical case is the interaction with
a nonlinear medium having Kerr nonlinearity, i.e., a
medium with an intensity-dependent index of refraction
n = ng + nz|E|?, where ng is linear part of the index of
refraction, n, is Kerr constant, and E is the vector of elec-
tric field intensity. The propagation in such a medium
could be described (in some approximation) by means
of the nonlinear Schrédinger equation (NSE), which con-
trols the behavior of E.

This equation admits different solutions. The spatial
optical solitons, which are an example of a solution, are
diffraction-free. The solitons may be divided into two
categories: scalar and vector. Scalar solitons involve only
one polarization component of an optical field [22,23],
whereas vector solitons may consist of two polarization
components [24].

The character of a scalar soliton and a condition for
its existence depend strongly on the dimensionality of
the configuration space as well as on the sign of the non-
linearity.

In (1+1)-dimensional [(1+1)D] (one space plus one
time dimension) space a soliton exists for either sign of
ny [22,23]. A bright soliton exists for ny > 0 and a dark
soliton (“kink”) exists for ny < 0.

In two or three dimensions no solitons exist for ny > 0
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[27]. There is a solitary wave solution that is known to
be unstable and can collapse to a self-focusing singularity
[25]. A soliton solution exists in two dimensions for n; <
0. These solutions represent vortices in on optical field
[26]. Considerably less attention has been devoted to
vector spatial solitons [24,28,29)].

The general aim of our investigation is to study condi-
tions for the existence of diffraction-free fields and their
properties. It is clear from given examples that the
problem of diffraction-free fields is very complex. There-
fore, we shall confine ourselves in this article to study a
diffraction-free field in a Kerr nonlinear medium. There
are two main aims of this article. The first aim is to
formulate the vector NSE and the corresponding laws of
conservation. The second aim is to use a condition for
diffraction-free fields to find diffraction-free fields and to
give some of their properties.

In Sec. II we shall state the definition of a diffraction-
free field [30]. In Sec. III we shall formulate the NSE in
vectorial form and the corresponding laws of conservation
for the energy density and momentum density of the elec-
tric field E. The formulation is given for (3+1)D space
(bulk material). The reformulation for (2+1)D (nonlin-
ear planar waveguide) and (1+1)D (paraxial approxima-
tion of the previous case) space is given in Sec. IV. In Sec.
V the scalar NSE is solved using the condition for the
diffraction-free fields. The recently discovered features
of known solutions are given. The whole description is
formulated for optical pulses (in a quasimonochromatic
approximation).

II. DIFFRACTION

The phenomenon of diffraction is well known in op-
tics. Nevertheless, it is very difficult to give an exact and
complete definition of diffraction.

One of the phenomena, which demonstrates diffraction
during the propagation in a free space, is a transverse
spreading of a generally distributed field. A nonzero flow
of the energy in the transverse direction corresponds to
this phenomenon. As we deal with problems of propaga-
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tion, we shall apprehend the diffraction as a nonzero flow
of energy in transverse direction.

The flow of energy of the electromagnetic field is deter-
mined by a Poynting vector S. Let us introduce a vector
E , which determines a dominant direction of propagation.
The Poynting vector can be decomposed as S = Sy + S,
where Sz, is a longitudinal part, which is parallel to 3,
and St is transversal part, which is perpendicular to 5
The relation S¢-Sz = ST~,§ = 0 must hold. The longitu-
dinal part S, determines the flow of energy in a dominant
(ﬁ) direction of propagation of the electromagnetic field.
The transversal part St determines the flow of energy
perpendicular to this direction.

The subject of our study is a diffraction-free propaga-
tion of a field. We shall use the following definition of
a diffraction-free field [30]: if in an electromagnetic field
the condition

V.S =0, (1)

holds, where V is a nabla operator, then this field is
diffraction-free. This definition of the diffraction-free
field admits nonzero transversal flow (e.g., a vortex with
zero radial flow but nonzero tangential flow).

The particular class of the diffraction-free fields fulfill-
ing condition (1) is

Sr =0, (2)

which is a particular case of condition (1). In this article
we shall investigate this class of the diffraction-free field.

III. DESCRIPTION

A wave equation for the electric field B is usually used
to solve problems of nonlinear optics. If one wants to
have complete electromagnetic description of the problem
solved, the magnetic field H has to be calculated using
the Maxwell equations.

One of the very important quantities in the electro-
magnetic field that cannot be generally decomposed to
the separate contributions of the electric and the mag-
netic fields is the Poynting vector describing the density
of flow (flux) of an electromagnetic energy. A density of
flow of the electric field can also be defined on the basis
of the wave equation. What the connection between this
density of flow of an electric field and the Poynting vector
is seems to be natural question. This connection is given
in the Appendix.

A. Equation of propagation

As remarked above, problems of nonlinear optics are
usually described by means of the wave equation

VZE — [_L()Gauﬁ = [.Loattf’, (3)

where V is the nabla operator, 8y = —é‘;’t—Z, € (po) is the
permittivity (permeability) of a material that is homo-
geneous and isotropic, and P is the vector of a nonlinear
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polarization. The wave equation (3) has been derived
from the Maxwell equations under the assumption

v.B=-1v. pw~o. 4)
€

Assuming that a complex vector V has form
V(t) = V(t)e ™, (5)

where w is the carrier frequency of an electromagnetic
field, then using quasimonochromatic approximation for
the vectors E and P, i.e.,

(6 — w)V = —iwV, (6)
the wave equation (3) can be rewritten as
V2E + 2iwpoed E + w?poeE = —pow?P, (7

where we have kept the first derivative of E on the left-
hand side of this equation.

We shall investigate the propagation of an electric field
in a nonlinear Kerr medium. The vector of the nonlinear
polarization P describing the Kerr medium is defined by
the relation

1
P = AE’E + ;B(E-E)E", (8)
where the asterisk denotes the complex conjugated quan-
tities. The values of the constants A and B depend on the
physical mechanism leading to the nonlinear Kerr effect.
Substituting (8) into (7) we obtain
2iwpoetE + V2IE + wzuer

= —pow? [A|E|2E - %B(E : E)E*] v (9)

which is the vector (3+1)D nonlinear Schrédinger equa-
tion. This equation is the starting point for our following
considerations.

B. Laws of conservation

Starting from Eq. (9), we arrive at the conservation
laws

8tw = —aij, (10)
F; = 0,95 = 0k Tjr, (11)
where

w= EIE|2’ (12)

i * *
S = —5o(B"-3,E—B - 5,E"), (13)
g;i = HoeS;, (14)

1 * *

Tjx = —W(ajE - E* + O;E* - 5,E)
1 2
¥ aqut 21!
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1
+o [AIBI+ L BIEF|. (15)

where j,k = x,v, 2, §;; is the Kronecker delta function,
and Einstein’s summation rule has been used. The quan-
tities introduced have the following physical meaning: w
is the energy density of the field (hereafter we shall omit
the qualification “electric” because we deal with the elec-
tric field only), the vector S is the average density of flow
of the field, the vector g is a momentum density of the
field, the vector F is a force density of the field, and fi-
nally the tensor T we shall call the stress tensor of the
field by analogy with the Maxwell stress tensor. It would
be possible to introduce another law of conservation, but
ones we have are adequate for our purposes.

Until now we have described propagation in bulk mate-
rial [i.e., the (3+1)D case|. It is known that the propaga-
tion is unstable in this case. The stability of propagation
is improved if a planar waveguide structure is introduced
into the material.

IV. NONLINEAR PLANAR WAVEGUIDE

We shall study the propagation in a standard nonlinear
waveguide which is compounded from a nonlinear thin
film surrounded by two linear semispaces with the plane
of the film perpendicular to the y direction. Let us de-
compose the field E in a form

E(z,y,2,t) = XE;(z,2,t)uz (y) + §Ey(z, 2, t)uy (y)
+ZE,(z, 2z, t)u.(y), (16)

where %, §, and Z are unit vectors and u;(y) are mode
functions of the linear waveguide satisfying the equation

Oyyuj + (k2 - ﬁf)uj =0 (17)

and the corresponding boundary conditions for j =
z,y, 2. The quantity k is

2_ 2, _ W 2o
k* = wipoe = 3 = kgn®, (18)

where the index of refraction n (or €) picks up values
describing a structure of waveguide. The quantities G;
are the magnitudes of vectors of propagation in a linear
waveguide corresponding to different kinds of modes.

If we suppose that the field propagates in the z direc-
tion, then u; is a mode function of a TE field and u, and
u, are mode functions of a TM field. Using relations (16)
and (17), Eq. (9) can be rewritten in the form

2iwpged Ej + AL E; + ,3]2EJ
= —pow? {A[N:cj|E=v|2 + Ny;|Ey|?
+N,,|E, ") —E;
z7 z Nj J

1 1,
+§B[szEﬁ + My;E2 + Mz,-Ef]-N—jEj } (19)
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where Ay, = (022 + 0;,) and
Ny = [ sl ay, (20)
Ny = [ fusPPhual? dy, (21)
M, = - wlup? dy. (22)

Equation (19) describes the behavior of the field in the
nonlinear part of the waveguide. It can be simplified for

several special cases.
Case (a): The TE field. In this case uy = u, = 0 and
Eq. (19) is simplified to

2iwpoed By + ALE, + B2E,

2 New
N,

1

which is a scalar NSE. 8, = fBrg are the corresponding
propagation constants.

Case (b): The TM field. In this case u, = 0 and Eq.
(19) is simplified to

2iwpoed By + ALEy, + ﬁiEy
1
= —IJO‘U2 {A [Nyy|Ey}2 + Nzy|EZ|2] 'N_Ey
y

1 1
+ =B [My,E2 + M,yE?] —E; ¢, (24)
2 N,

2iwpoed E, + ALE, + ,8sz

1
= —pow? {A [Nys| By[* + Noo| B.[*] 5 E-
z
1 2 2 1 *
+ ‘2_B [MyzEy + MzzEz] FZE:} ’ (25)
where 8, = (8, = [Brm are corresponding propagation

constants. If u, < uy, then neglecting small quantities
we obtain

2iwu066tEy + ALEy + ﬂ.SEy

N, 1
= _uow'zwv_y [A + -2-3] |Ey|2E,, (26)
y

21:0)[_1.063th + ALE; + ,Bsz

Ny, 1_M,. .
= _“owz{A——]\;' |Ey|?E, + 3B y E;Ez}. (27)
. z

N,

Equation (26) is again the NSE for the field component
E,. Equation (27) is a linear equation for the field com-
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ponent E,. The behavior of the component E, depends
on the behavior of the component E,, but not vice versa.

Case (c): Weakly guided field. If the linear refraction
index difference is small, then v, < u, = u, and we have

Ny = N,,
Nge = Nzy = Nyya
Mjk = Njk.

(28)

In the same approximation as in case (b) we obtain

2iwpoed E; + ALE; + ﬂ2

2Nm:c
N,

= —ow

[AlElej + %BE’E}] . (29)
2iwpeedE, + ALE, + ,33Ez

1
= —pow? {A [Noz|Ez|® + Ny, |Ey|?] FE

z

1 1,
+ ‘Q‘B [Ma:zE: + MyzE;:] —N:Ez} ’ (30)

where .7 =Y, :82 = IBTEv ﬁ’y = ﬁz = :BTMa and

E =2E, +9E,. (31)
Equation (29) now represents a coupled NSE. Equation
(30) is a linear equation for a longitudinal component of
the field. Case (c) includes previous cases.

It is obvious that the influence of the small longitudinal
component F, can be formally described as a perturba-
tion of the field E. The influence of this perturbation has
been studied in many papers (see, e.g., [31]), of course,
in another context.

Hereafter we shall suppose that a longitudinal com-
ponent of the field is negligible and therefore we shall
confine ourselves to Eq. (29) only. Of course, this as-
sumption is exact only for a TE field.

Paraxial approximation
As we have assumed above, the field E mainly propa-
gates in the direction z. Then it is convenient to write

E = Qe*#?, (32)

where 8 = fr1g + 68 = Brm — 68. If the changes of
the field along the z direction are not too sudden, we

can introduce paraxial approximation by means of the
relations

10::Q;] < 188.Q;| < |8%Q;],

In this approximation Eq. (29) is

j=z,z. (33)

2iwpoed;Q; + 2iB02Q; + 0:2Q; + (82 — B2)Q;

i ol CC IR L SCH BEN
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The corresponding conservation laws are

Ow = — (6@5m + %’ia,w) s (35)
F, = at.q:c = amT:cm - %82927 (36)
F.=0,g. = -2 (a 5.+ 2% ) =Zow, (37)
where w, S, and T are
w = el (38)
S = 2#0“) (Q -0:Q - Q-0:Q )a (39)
2_ B
= 40
5= 2ojap = L, (40)
_ 2 1 2
T:ca: “ w2| :ch 1’¢|QI
ez Laiqpe —Blelz (41)
4N ’
Te: =Toe = 200 wz(Q -0y Q-Q-3.Q )
w k
_ P 2_ B pu
T., = M0w2|Q| =EW =g (43)
It is clear that Eqgs. (35) and (37) are the same. This

means that the description of the stress is reduced to the
component T, only.

From Eq. (35) it follows that the energy density varies
in the course of space-time propagation in the z direction
due to the transverse flow S, (its derivation). The exis-
tence of this flow appears as the diffraction of the field.
As follows from Eq. (36), the force F, that acts in the
transverse z direction during space-time propagation ap-
pears due to the transverse stress T,, in the field. This
interpretation can be reversed. The force that acts in
the field during the space-time propagation gives rise to
stress and causes the transverse flow of energy of the field.
In other words, one can say that the effect of this force
manifests itself as diffraction. This force is also nonzero
in vacuum. Therefore the existence of this force can be
seen as an intrinsic property of the field.

The given interpretation naturally stimulates the ques-
tion of what the source of this force is. The discussion
of this question is beyond the scope of this paper and
therefore we shall not deal with it here.

From Eq. (36) it follows that there is no transverse
force in the diffraction-free field, i.e., when S, = g, = 0.
We shall study properties of such a field. To make our
investigation more simple, in this article we shall confine
ourselves to the cases that can be described by the scalar
NSE [e.g., TE polarization (Ey = 0), TM polarization
(E, = 0), and circular polarization (E, = E,e*/?)].
This means that Q is substituted by Q in Egs. (34)-
(43).
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V. DIFFRACTION-FREE FIELD

To study problems of propagation it is suitable to in-
troduce the transformation

z' = :3‘7:’
Z' = Bz, (44)

These variables are dimensionless. Using this transfor-
mation we obtain from Eq. (34)

0,Q = —30,1,Q — sIQQ, (45)
where Q = Q(z',2',7) and
k\? N, 1
K= o (%) N, (A + EB) . (46)

Let us note that dimensionless time 7 is only a parameter
in this equation. To describe not only optical beams
(stationary solutions) but also pulses we shall keep this
dependence hereafter.

The corresponding laws of conservation have the form

O,y w=—-98,85, (47)
F=08,8=08,T, (48)

with
w=1QP, (49)
§=-2(Q"0,Q - Q0,Q"), (50)
T=—[0,QP + {0, IQP + 36l (5D)

These quantities are proportional to the original quan-
tities. Hereafter we shall omit the dash over z and z.
Our aim is to study the properties and behavior of a
diffraction-free field. Such a field has to fulfill the condi-

tion
S(z,z,7) =0, (52)

if one uses the definition (2). The conservation laws for
the diffraction-free field are

d,w =0, (53)
8,T = 0. (54)

From these relations it follows that the energy density
does not depend on z and the stress T' does not depend
on z.

We shall search for a general diffraction-free solution
of Eq. (45). Let us introduce the substitution

Q=Ae", (55)

where A and ¢ are real quantities. From Eq. (45) we
obtain

8,4 = —0, AB,p — %auw, (56)

4425
A8:p = 0eh — 5 A(Dap)? + nA® (57)
and from (52) we have
S = A%9,p = 0. (58)
Ignoring the trivial solution we get
Ozp=0 (59)
and
8,A =0, (60)
Adyp = %BMA + kA3, (61)

Equation (60) corresponds to Eq. (53). Since ¢ does not
depend on z and A does not depend on z, Eq. (61) can
be split into

1
0,0 = §A,6, (62)
0.0A — ABA + 2kA% =0, (63)
where AB = ApP(r). The solution of Eq. (62) is

©(z,7) = 3AB(1)(z — 20) + C1, where zy and C; are
integration constants. Without loss of generality we can
set C; = 0. It is obvious that the constant A3 represents
the nonlinear phase correction of the linear constant of
propagation.

For the stress T' of the field we have

T =—= [(8:4)% — AB,0 A — KAY] (64)

[(8:4)% — ABA% + kA, (65)

N =N =

where Eq. (63) has been used. Taking into account Egs.
(54) (T cannot depend on z) and (60) (A cannot depend
on z), it is obvious that T is a function of 7 only. Apart
from the value of k (if it is positive or negative), we can
summarize properties of the diffraction-free field as fol-
lows: (i) the transversal distribution of the amplitude
cannot change during the propagation; (ii) the transver-
sal distribution of the phase is uniform during the prop-
agation; and (iii) the stress in the diffraction-free field is
constant or, in other words, the force does not act in the
diffraction-free field.

To gain more information about properties of the
diffraction-free field we shall analyze properties of the
diffraction-free field in relation to the magnitude of 7" and
Ap and solve Eq. (63). Since the stress T of a diffraction-
free field is constant, each corresponding solution has to
lie on the isohypse of a surface T = T(A,8,A). The
isohypses that are closed lines correspond to periodic so-
lutions. These solutions are the subject of our interest.

A. Case k > 0 (focusing case)
1. AB>0

The surface T is shown in Fig. 1. The surface has two

maxima at the points (—+/AB/2k,0) and (0,/AB/2k).
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FIG. 1. Behavior of the stress T' (in arbitrary units) as a
function of A and 8, A is demonstrated for the case « > 0 and
AB > 0. The contour map corresponds to isohypses on the T’
surface.

All values of the stress fulfilling the condition

2
T < Ty = 2P
8K

(66)

are acceptable. The corresponding solutions are periodic
functions as follows from the shape of the contours.

2. AB<O

The surface T is shown in Fig. 2. The surface has
one maximum at the point (0,0). The stress has to be
negative, i.e.,

T < Thax = 0. (67)
The corresponding solutions are again periodic functions
as follows from the shape of the contours.

All diffraction-free solutions for the case k > 0 are

A(z) = Ao dn[AovVE(z — z0), m], (68)
for
Te<0,A8—i2>, AB >0 (69)
and
A(z) = £Aom; en[AgVE(z — o), m4] (70)
for

P

¥
g
Vil

A resssssss
s s
i

FIG. 2. Same as in Fig. 1 but for Ag < 0.
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T € (—00,0), AP arbitrary, (71)

where Ag is a constant, cn(y,m) and dn(y, m) are the
Jacobian elliptic functions, and m € (0,1) is their mod-
ulus. The stress 7' and the correction of the propagation
constant AQ can be expressed by means of 4p and m as

T= %»:Agu —m?), (72)
AB = kA%(2 — m?) (73)
for solution (68) and
T = Srddm(m? - 1), (74)
AB = kAZ(2m2 - 1) (75)

for solution (70).

Let us note that from a practical point of view it is
more suitable to use parameters Ag and m for the deter-
mination of a solution. These parameters can be func-
tions of 7.

The solutions are the periodic functions with a period

2K (m)

Lz(m) = —\/EAO (76)
for solution (68) and
Lo(my) = 2K(m1) (77)

T VK4
for solution (70), where K(m) is a complete elliptic inte-
gral of the first kind.

The energy density w is also a periodic function with

the period (76). The total energy corresponding to this
period is

La(m)/2 A,

W (m) = /_ @ =272 (78)
for (68) and

W(m) = 272 [B(m) = (1 - md)K(my)]  (79)

for (70), where E(m) is a complete elliptic integral of the
second kind.

Let us take notice of particular cases. If m = 0 we
have for solution (68)

A(z) = Ao, (80)
AB = 2kA2, (81)
T = %mg, (82)
L, = ”\/-?7—:4‘;, (83)
W= T (84)

NG

The solution has the shape of a plane wave, where the
influence of nonlinearity manifests itself in the phase only.
This solution is entirely phase modulated.

L, is a fictive period that appears as the limit. But we
know from the stability analysis that the plane wave is
unstable with respect to perturbations that have a period
longer than L. It is also worthwhile to remark that there
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is nonzero stress in a plane wave.
If m = 1 we have for solution (68)

A(z) = Ao sech[Agv/k(z — zo)], (85)
AB = kA2, (86)
T =0, (87)
L, = oo, (88)
= 240 (89)

N

The solution has the form of the spatial soliton. The
influence on the phase is, in this case, one-half of that in
the case of the plane wave. The distribution of the energy
density is not periodic and the total energy is that less
the energy corresponding to one period in the plane wave.
But the most pronounced features of the spatial soliton
is the fact that the stress is zero. For solution (70) and
my = 1 the results are the same. In the case m; = 0 we
have a trivial solution.

If m;y = 1/4/2 then AB = 0 and the phase of the so-
lution is not affected. This solution is entirely amplitude
modulated.

B. Case k < 0 (defocusing case)
1. AB>0

The surface T' is shown in Fig. 3. The surface T is
saddle shaped and periodic solutions do not exist.

2. AB<O

The surface T is shown in Fig. 4. Periodic solutions
exist if the stress lies in the interval

AB?
ire<—§ﬁﬁﬁ>.

A(x) = £Aomasn[Ag \/]—n—|(:v — xg), Ma],

where sn(y, m) is the Jacobian elliptic function. For T
and A we have

(90)
The solution is

(91)

iy
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FIG. 3. Same as in Fig. 1 but for x < 0.
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FIG. 4. Same as in Fig. 3 but for A < 0.

1
T = — || Adm3, (92)

AB = —|x|A3(1 +m3). (93)

The period of the solution is
(94)

and the total energy corresponding to half of this period
is

24,
VI~

Let us take notice of particular cases. If my = 0 then
A(z) =0, i.e., a trivial solution. If ms = 1 then

W(mg) =

[K(mz) — E(m)]. (95)

A(z) = £ Ao tanh[Ag+/|k|(z — o)), (96)
AL = —2|x|Aj, (97)
T = — 2 |nl43, (98)
L, = oo, (99)
W = co. (100)

This solution is known as a dark spatial soliton. Its non-
linear phase and the stress are the same as those for the
plane wave in the focusing case, but with opposite sign.

It is known about the dark soliton that it is stable
with respect to arbitrary disturbance. Furthermore, the
plane wave in the defocusing case is resistant to arbitrary
disturbance. Let us note that one can obtain a plane
wave from the expression for the dark soliton limiting
g — Foo.

VI. VALIDITY OF THE PARAXIAL
APPROXIMATION

Our solutions describe the physical situation investi-
gated under the assumption that the paraxial condition
(33) is fulfilled. Substituting any of our solutions into
(33) we arrive at

%mm <1 (101)
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Since A is the contribution of the nonlinear interac-
tion to the linear constant of propagation, we can say
that the paraxial approximation is valid if the nonlinear
interaction does not influence the propagation constant
too much.

There is one special case that we would like to point
out. Substituting into (33) any of our solutions corre-
sponding to the plane wave, we arrive at the condition

|k|Af < 1. (102)
This means that the paraxial approximation is not ful-
filled by itself for an arbitrary plane wave, as it is some-
times supposed. The maximum power of the plane wave
is limited in the paraxial approximation.

VII. CONCLUSION

This paper contains several results of our investigation
of the properties of diffraction-free fields. The derivation
of the laws of conservation corresponding to the vector
NSE describing the propagation of an electric field in
the nonlinear Kerr medium are presented. These laws of
conservation are derived for a (3+1)D medium (a bulk
material) and as well for a (2+1)D medium (a nonlinear
planar waveguide). Their physical interpretation is given.
It seems to us that the interpretation presented can be
a base for an alternative view on the behaviour of the
electromagnetic field.

The formulation involves arbitrary polarization. It is
worthwhile to point out that the vector formulation is
necessary if one wants to investigate, e.g., the interaction
of two spatial optical solitons colliding under a general
crossing angle between them, although the propagation
of each of them separately can be described by a scalar
NSE.

The condition for the diffraction-free field, which is
stated at the beginning of the article, is then used to ob-
tain a solution of the NSE in the scalar case. Although
the solutions obtained are known, different physical char-
acteristics (the stress of field and the force) are intro-
duced. From this point of view there are no forces in
the diffraction-free fields and the stress of these fields is
constant.

It is again necessary to remember that our results are
not valid for the stationary optical beams only, but also
for the optical pulses (the quasimonochromatic approxi-
mation limits the length of the pulses). If, for example,
Ao = Ag sech(7) and m = 1, then relation (85) describes
the spatial soliton in the form of the pulse. The ampli-
tude distribution of such a pulse spatial soliton is demon-
strated in Fig. 5.

Not only Ay but also the modulus m (or the stress T'
or/and the nonlinear phase correction AB) can depend
on 7. In this case the character of the field can change
during a pulse and the behavior is more complicated.
Finally, it is shown that a strong plane wave does always
not fulfill the paraxial approximation, as is sometimes
expected.

In conclusion it is worthwhile to remember that if the
function Q(z, z) is the solution of NSE, then the function
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FIG. 5. Space distribution of the amplitude of the pulse
spatial soliton for an arbitrary time moment if the amplitude
Ao has the form Ag = Ao sech(7) .

U(z,2) = C Q(C(z — z0),C%(z — zp)) &',

where C, o, 20, and a are real constants, is also the
solution of the NSE. This transformation can sometimes
be useful if one wants to rewrite the solution to a more
suitable form.

APPENDIX

Using the quasimonochromatic approximation we shall
show a relation between the density of flow defined on the
basis of the Maxwell equations (Poynting vector) and the
density of flow defined on the basis of the wave equations.
The complex electric vector E and the complex magnetic
vector H fulfill the Maxwell equations

V x H — e8,E = 0, (A1)
V x E 4+ udH = 0, (A2)
V-H=0, (A3)
vV.-E=o. (A4)

The conservation law of energy
V-S+0w=0 (A5)
can be derived from the Maxwell equations, where
w = €[E|* + polH|?,
S=E*"xH+E x H*,

(A6)
(A7)

where w and S are the energy density and the Poynting
vector, respectively.

Starting from Egs.
equations

(A1)-(A4), one can derive wave

VzE - [LfattE = 0,
VZI:I - ue@ttﬁ =0.

(A8)
(A9)

From these wave equations we get other conservation
laws

.

9;(B* - 9,E — E . 9;E*)

—ped,(B* - 8,E — E-9,E*) =0, (A10)
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9;(|a* -0, - H-9;H")

—[_L€6t(ﬁ* . 8tfl - ﬁ . 6tﬂ*) =0. (A].l)

Using expression (5) for the vectors EE and H and the
quasimonochromatic approximation (6), the conservation
laws (A10) and (All) are
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Sp; = =3~ (E"-S;E ~E-5E"), (A16)
7

Smj = —5—(H"-0;H — H.5;H"), (A17)

where j = x,y,z. The law of conservation (A5) is for-
mally the same.

It is evident that wg (wg) is the density of the electric
(magnetic) energy of the electromagnetic field. Compar-
ing Eqs. (A5), and (A12) and (A13), one can see that
SE (Sg) has the same meaning for the the electric (mag-
netic) field as the Poynting vector for the electromagnetic
field. Therefore we can say that the Poynting vector S
can be decomposed to separate contributions of electric
and magnetic fields in the quasimonochromatic approxi-
mation.

V -Sg + 6ywg =0, (A12)
V'SH+61'(UH =0, (A13)
where
wg = €|B|?, (A14)
wir = nolHP?, (A15)
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